995 resultados para Collaborative Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document introduces the main concepts of Collaborative Engineering as a new methodology, procedures and tools to design and develop an aircraft, as Airbus Military is implementing. Airbus designs and industrializes aircrafts under Concurrent Engineering techniques since decades with success. The introduction of new PLM methodologies, procedures and tools, mainly in the industrialization areas, and the need to reduce time-to-market conducted Airbus Military to push the engineering teams to do things in a different way. Traditional Engineering works sequentially, Concurrent Engineering basically overlaps tasks between teams using maturity states and taking assuming risks. Collaborative Engineering promotes a single team to develop product, processes and resources from the conceptual phase to the start of the serial production. The deliverable of the team is an iDMU (industrial DMU), a complete definition and verification of the virtual manufacturing of the product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airbus designs and industrializes aircrafts using Concurrent Engineering techniques since decades. The introduction of new PLM methods, procedures and tools, and the need to reduce time-to-market, led Airbus Military to pursue new working methods. Traditional Engineering works sequentially. Concurrent Engineering basically overlaps tasks between teams. Collaborative Engineering promotes teamwork to develop product, processes and resources from the conceptual phase to the start of the serial production. The CALIPSO-neo pilot project was launched to support the industrialization process of a medium size aerostructure. The aim is to implement the industrial Digital Mock-Up (iDMU) concept and its exploitation to create shop floor documentation. In a framework of a collaborative engineering strategy, the project is part of the efforts to deploy Digital Manufacturing as a key technology for the industrialization of aircraft assembly lines. This paper presents the context, the conceptual approach and the methodology adopted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In various industrial and scientific fields, conceptual models are derived from real world problem spaces to understand and communicate containing entities and coherencies. Abstracted models mirror the common understanding and information demand of engineers, who apply conceptual models for performing their daily tasks. However, most standardized models in Process Management, Product Lifecycle Management and Enterprise Resource Planning lack of a scientific foundation for their notation. In collaboration scenarios with stakeholders from several disciplines, tailored conceptual models complicate communication processes, as a common understanding is not shared or implemented in specific models. To support direct communication between experts from several disciplines, a visual language is developed which allows a common visualization of discipline-specific conceptual models. For visual discrimination and to overcome visual complexity issues, conceptual models are arranged in a three-dimensional space. The visual language introduced here follows and extends established principles of Visual Language science.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problems of collaborative engineering design and knowledge management at the conceptual stage in a network of dissimilar enterprises was investigated. This issue in engineering design is a result of the supply chain and virtual enterprise (VE) oriented industry that demands faster time to market and accurate cost/manufacturing analysis from conception. The solution consisted of a de-centralised super-peer net architecture to establish and maintain communications between enterprises in a VE. In the solution outlined below, the enterprises are able to share knowledge in a common format and nomenclature via the building-block shareable super-ontology that can be tailored on a project by project basis, whilst maintaining the common nomenclature of the ‘super-ontology’ eliminating knowledge interpretation issues. The two-tier architecture layout of the solution glues together the peer-peer and super-ontologies to form a coherent system for both internal and virtual enterprise knowledge management and product development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der Beitrag stellt eine Kollaborationssoftware vor, die im Rahmen des AiF-Forschungsprojektes „KoDeMat“ entwickelt wurde. Der Fokus wird auf die Problemfelder der fehlenden Standardisierung und Anpassbarkeit im Bereich von fördertechnischen Anlagen gerichtet. Ziel ist, unter Zuhilfenahme von standardisierten, kollaborativen Engineeringprozessen, eine unternehmensübergreifende Planung, Realisierung und einen Umbau von komplexen dezentral gesteuerten Intralogistiksystemen sowie deren Betrieb effizient zu ermöglichen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIRBUS Military has undertaken a project to implement the industrial Digital Mock-Up (iDMU) concept to support the industrialization process of a medium size aerostructure. Within the framework of a collaborative engineering strategy, such project is part of the efforts to deploy Digital Manufacturing as a key technology for the industrialization of aircrafts assembly lines. The project has confirmed the potential of the iDMU to improve the industrial design process in a collaborative engineering environment. This communication presents the main project objectives, the key methodological points, the main project achievements and the next additional developments to increase the scope and benefits of the iDMU concept.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Web is a powerful hypermedia-based information retrieval mechanism that provides a user-friendly access across all major computer platforms connected over Internet. This paper demonstrates the application of Web technology when used as an educational delivery tool. It also reports on the development of a prototype electronic publishing project where Web technology was used to deliver power engineering educational resources. The resulting hyperbook will contain diverse teaching resources such as hypermedia-based modular educational units and computer simulation programs that are linked in a meaningful and structured way. The use of Web for disseminating information of this nature has many advantages that cannot possibly be achieved otherwise. PREAMBLE The continual increase of low-cost functionality available in desktop computing has opened up a new possibility in learning within a wider educational framework. This technology also is supported by enhanced features offered by new and ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A review of the issues for supporting learning of power engineering in Australia is presented in this paper. The learning needs of students and the support available in blended learning and through distance educations are explored in this review. Specific software tools to assist the learning environment are appraised and the relevance for the next generation of power engineers assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.